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Abstract

Complex network theory provides an elegant and powerful framework to
statistically investigate different types of systems such as society, brain
or the structure of local and long-range dynamical interrelationships in
the climate system. Network links in climate networks typically imply
information, mass or energy exchange. However, the specific connection
between oceanic or atmospheric flows and the climate network’s structure
is still unclear. We propose a theoretical approach for verifying relations
between the correlation matrix and the climate network measures, gener-
alizing previous studies and overcoming the restriction to stationary flows.
Our methods are developed for correlations of a scalar quantity (temper-
ature, for example) which satisfies an advection-diffusion dynamics in the
presence of forcing and dissipation. Our approach reveals that correlation
networks are not sensitive to steady sources and sinks and the profound
impact of the signal decay rate on the network topology. We illustrate our
results with calculations of degree and clustering for a meandering flow
resembling a geophysical ocean jet.

Introduction

The network approach has become an essential tool in the study of com-
plex systems [BLM™06,/GZC08,Mug08|, where networks are reconstructed
from time series in order to uncover underlying dynamics [HS12[ZLRGT 11}
[TC14aMK15,GYF15]. Climate networks, i.e. those in which geograph-
ical nodes are linked when there is similar climatic dynamics on them (as
measured by correlations, mutual information, etc.), have been thoroughly
investigated in the last years in [YGHO8,PHHV11,MBMK11,vdMDG™ 13|

WGAT13DI15]. In the same context of geophysical systems, flow networks

have also been introduced [RSGLHG14|SGRLHG15,SGVR ™ 15,SGVHGL15|.




They are networks in which geographical nodes are linked when there is
fluid transport from one location to another. Since correlations between
different regions of a flow or geophysical system should be greatly influ-
enced by the mass transport among them, it is natural to search for the
relationship between these two types of networks, which will also help to
understand the meaning of some of the teleconnections appearing in the
climate network analysis. The works [MRMK14] and [RMK14| are in this
line, where networks were constructed from flow systems using a continu-
ous analogue of the Pearson correlation. However these approaches have
their limitations, mainly the restriction on the velocity fields to be con-
stant in time. But the time-dependency plays an important role in real-
world flows, for instance, all ocean currents vary over a large range of time
scales [WJ82,SGGC13[DPHO04].

In this paper we investigate general relationships between climate net-
works (specifically, networks built from correlations) and flow networks. In
particular we develop a method for the analysis of time-dependent flows
and demonstrate its potential for a specific model describing a meandering
current. The quantity for which we compute spatial correlations is a scalar
which is transported by the flow following an advection-diffusion dynam-
ics. We can think on it as the ‘temperature’ of water in an ocean flow,
but the formalism would apply to any transported quantity that could
be considered ‘passive’ in some range of time scales. To avoid trivial ho-
mogenization, the scalar is forced by sources and sinks, which have both
a spatially-dependent constant component and a time-varying stochastic
part, and a decay process that prevents indefinite build-up, finally dissi-
pating the input from the sources. By discretizing the system dynamics in
space and time we obtain a linear recursive equation for the time-series of
the scalar. We estimate the spatial correlation matrix from the time-series
by averaging over various realizations of the noise. The correlation matrix
can be thresholded, and interpreted as the adjacency matrix of the corre-
lation network, which can then be analyzed using network measures which
provides understanding of the formal relationship between the Lagrangian
transport in the basic flows and the corresponding correlation network as
used in climate networks.

The paper is organized as follows: First in the section Methods we
introduce the tools for the construction of networks from general time-
dependent flows, and describe our example meandering-jet model. The
Results section describes the properties of our main formulae and illustrate
them with the model flow. In the last section we discuss the main findings
of the paper.

Methods

We introduce an algorithm for the construction of correlation networks
from the spatial distribution of a scalar (e.g. ‘temperature’) transported in
a two-dimensional domain by an advection-diffusion equation (ADE) with

additional forcing and decay terms:
T(Z,t
% = KAT(Z, 1) —0(Z,t)-VT (T, )+ F(Z) - bT(Z,t) +VDE(E, 1), (1)

where & is the diffusion coefficient, ¥(Z,t) is the time-dependent bidimen-
sional velocity field which we assume to be incompressible, F'(Z) is the forc-



ing, which describes time-independent sources and sinks, £(Z, t) is uncorre-

lated Gaussian white noise with zero mean and correlations (£(Z,t)¢(y,t')) =
5(t —t')0(& — 7). D is noise intensity and b is a damping parameter which

sets the time-scale at which perturbations are dissipated in the system. We

add decay and forcing to avoid convergence of the scalar distribution to a

simple homogeneous equilibrium, and these processes are actually present

in real geophysical flows [NHG10].

Discretised dynamics

The algorithm of network construction for a time-dependent velocity field
requires first a discretisation of . Let us consider first the simplified
equation without forcing and decay:
oT
— = kAT —9(Z,t) - VT. (2)
ot
We discretize using an Euler scheme for a regular N x N-lattice with
spatial resolution Az and time-interval At¢. The horizontal and vertical
components of velocity field for the lattice point (4, j) at time step k = ¢t /At

are vf; (k) and v}; (k). This gives:

Tij(k + 1) = Ti;(k) —
At

2Ax
kAL

Ax? (

where the node’s indices are i,j € [1, N]. We use open boundary condi-
tions. The discretisation parameters Ax and At should fulfill the Courant-
Friedrichs-Lewy condition [PTVF88]| for the stability of the discretisation
scheme

Tijyr(k) + Tij_1(k) + Tiyr;(k) + Tim1;(k) — 4T55(k)),

AN max(v(zx,t))At

Az << Az
Equation can be written in a matrix form in terms of the N2 x N2
one-step transformation matrix P(k) = P(v;;(k)) for time step k and the
N2-dimensional state-vector T'(k) of components (T'(k)), = T;;(k), with
(i,4) the lattice coordinates of &:

<< 1.

T(k+1)=P(k)T(k). (4)
Iterating leads, for k > &/, to
T(k+1) =My Tk, (5)

where
My =P(k)P(k —1)..P(K' + 1)P(K') (6)

is the analogous to the transport matrix defining the flow networks in
[SGRLHG15]. Here it is computed from a discretization of the ADE,
whereas in other works [SGVR™15,|SGVHGL15| it is computed by the
Ulam method that involves the Lagrangian trajectories of particles, but
the meaning is the same: it is the matrix that evolves in time the vector
T(k).
Adding the decay term —bT to equation :
oT

o = AT —(#1) - VT — T (7)

(vij (k)T (k) — v (k) Tim1; (k) 4 0f; (k) Tija (k) — v (k) Tij 1 (k)) +

3)



does not pose technical difficulties, since the change of the variables T'(k) =
e AT (K) reduces Eq. @) to (2) for T(k). Therefore the one-step solution

becomes:
T(k+1) = e 2P (k)T (k). (8)

Being a transport matrix, the eigenvalue with largest modulus of matrix
P(k) is 1. The new one-step transformation e~*A'P (k) will have eigen-
values which in modulus are smaller than 1, ensuring that perturbations
become damped.

Reintroducing the forcing terms F(Z) + v DE(Z,t) from (1)) into the
discretized framework can be done for example by integrating them
with the Euler method. The one-step solution becomes

T(k+1) = e P2P(k)T(k) + AtF + se(k). (9)

F is the time independent spatial forcing vector, and e(k) is, at each time
k, a vector of independent Gaussian random variables of zero mean and
unit variance. These vectors are uncorrelated at different times. From the
stochastic Euler method |[TC14b], the intensity of the discretized noise is
s =/ DAt/Az?. Tteration of Eq. @ for (k+ 1) time steps gives the time
evolution of the scalar distribution vector:

k k
Tk+1) =G T(0)+ Atz Grrt1-1 F+ SZ Grrt1—1 €(k—1) . (10)
=0 =0

We have introduced the propagation matrix, or propagator:

Gup = e P2 P(k)e PAP (k—1)...e PAP(K) = e (FHI=FOPAIND > K,
(11)
and for notational convenience, we have defined

GkkJrl =7 y (12)

the N2 x N? identity matrix.

Calculation of correlations

We are now able to compute the correlations associated to the time series
generated by Eq. . We consider the direct product matrix T'(k)T(k)*
(the superindex { means transpose) whose matrix elements are products of
the transported field at different spatial points (T(kz)T(k)T)w = T(kz)fT(kz);
We average it over realizations of the noise €, operation which is denoted by
(.). We also include in the same operation averaging over the initial condi-
tion T'(0), for which we assume (7'(0)) = 0. But we will see that in fact this
assumption is irrelevant for our results, since the final expressions at long
times lose dependence on the initial condition. Using (e(k)e(k')) = Lo,
we find:

(T(k+ )Tk + 1)) = Gro(T(0)T(0)GI, +
k k k
(A>3 G FFIG, + 82 GGy, (13)
1=01'"=0 =0

The first term in the r.h.s. of gives the evolution of the initial cor-
relations. Because of the properties of the eigenvalues of Gyg, this term



will decrease with k£ and become negligible after a number k of steps such
that the corresponding time kAt satisfies bkAt >> 1. In the same limit,
by averaging Eq. (10), we see that
k
(T(k+1)) = At Grep1F , bAtk >>1, (14)
1=0
so that the second term in the r.h.s. of Eq. is (T(k + D)){T(k +
1)f). Combining these facts, we obtain for the spatial covariance of the
transported scalar, if bkAt >> 1:

Cov(T(k)) = ((T(k) = (T(k)) (T(k) = (T(k))' )
k—1

SQZGk—lk—lG};_lk_l . (15)
=0

Expression , with and , gives the formal relationship be-
tween the correlations used to construct climate networks, obtained from
the matrix Cov(T(k)), and the transport properties of the flow, which are
contained in the flow-network matrix My and enter into via .

Network construction

From the covariance matrix we can calculate the Pearson correlation. In
terms of the matrix elements of the covariance matrix, (Cov(T'(k)))z;, the
matrix elements of the Pearson correlation matrix C(k) are:
Cov(T(k))) =
_ (Cov(T(k)))s | )
\/(Cov(T (k)2 (Cov(T (k)5

As standard for climate networks, we construct correlation networks
from the symmetric and positive semi-definite matrices C(k). We threshold
matrix C(k) to construct a binary adjacency matrix A(k):

(C(K))

g

Ak)zg = 1 if [C(k)zgl =~

Within reasonable limits the value of the threshold value v below which
the correlations are set to zero does not significantly affect the result. The
resulting thresholded matrix A (k) is the adjacency matrix of the correla-
tion or climate network which is analyzed using network measures. In the
following we will tune the threshold ~ to obtain a network with a prescribed
link density.

A model flow

To illustrate the use of the formulae derived above, we choose a meandering
flow model [Sam91,LNHGHO1] to construct the flow-networks. It resem-
bles the simplified velocity structure present in ocean currents such as the
Gulf Stream or the Kuro-Shio. Following |[CLV 99| the streamfunction is
given by:

y — B(t) cos (m(xz — ct))

U(z,y,t) =1 — tanh
[1+ m2B(t)2sin® (m(z — ct))]

;o (18)

[N



where m is a wave (meander) number which we set to 27/L,, L, = 7.5 and
B(t) is the wave amplitude, given by B(t) = By+v cos(wt+6). A snapshot
of the streamfunction is plotted in Fig. It describes a jet flowing
towards the positive = direction, more intense in the central core region,
and meandering in the y direction. A meandering flow is well-studied flow
model [UBPOT7,/San14]. Moreover, regions of the velocity field, denoted by
Eq.7 contain flows with more simple structure. Altogether this makes a
meandering flow a suitable model to test a novel flow networks method. We
fix parameters at Bp = 1.2, ¢ = 0, w = 0.4, § = 7/2, and compare results
for the static, v = 0, or oscillating in amplitude, ¥ = 0.7, meander. In the
first case particle motion in the flow is integrable whereas in the second
chaotic motions arise |[CLVT99,[LNHGHO1]|. From ¥(z,y,t) the velocity
field 7 = (v*,vY) is calculated as:

oV (z,y,t)

oV (z,y,1)
Oy '

T )= —
V" (x,y,t) B

, v(z,y,t) = (19)

Results

In the case without advection (or advection with a constant and homoge-
neous velocity field ©(z,y,t) = Uy) Eq. can be solved exactly and the
Pearson correlation computed. The resulting network is a fully homoge-
neous graph in which every node is linked with all neighbor nodes within a
correlation length given by 1/ /b. In the presence of non-homogeneous ad-
vection, the network becomes inhomogeneous with properties determined
by Eq. which encodes, via the propagator G, a non-trivial interplay
between advection, diffusion and decay. Here are some implications of our
main formula Eq. :

e In the framework of the linear ADE dynamics we are using here, a
time-independent spatial forcing F () has no influence on the covari-
ance matrix, as it is constructed from anomalies with respect to the
mean. In the same way, white noise intensity s or D disappears when
normalizing the covariance to obtain the Pearson correlation coeffi-
cient of Eq. . Thus correlation networks become independent
from the forcing terms present in the linear ADE Eq. (although
these terms need to be present to sustain the fluctuations from which
correlations are computed). The choice of the white noise in Eq.
was motivated by |[Has76|, where the effect of the random weather
excitation on the ocean dynamics is represented by the white noise.

e For flow networks constructed from the transport matrix Mgy (or
Gygr), nodes are connected if there is physical transport between
them. For networks constructed from the correlation , instead,
the presence of the product of two propagators, kalk*lGL—lk—zv in
each term of the sum in Eq. implies that correlations between
two nodes will be non-vanishing only if they receive simultaneously
(at time k) the effect of fluctuations originated at the same source
(at time k — [). This cannot happen only by advection, because La-
grangian trajectories are predetermined by deterministic flow model.
Diffusion is needed to spread stochastic perturbations and let them
to affect different sites. Thus, links between nodes in correlation
networks constructed from transported quantities will not represent
direct physical transport between them, but the susceptibility for



them to be reached by perturbations transported (by advection and
diffusion) from the same origin (and within a time 5=! from its birth,
because of the exponentially decaying temporal factor in Gy ).

e Even if for large integration time k Eq. involves a large number of
terms in the sum, they decrease fast in magnitude, and actually only
the ones with [ such that b(k —1)A¢ < 1 make a relevant contribution
to the covariance or Pearson correlation at time k.

e Cov(T'(k)) is a time-dependent matrix, as it depends on Gy and
thus on P(k), which inherits the time-dependence on the velocity
field ¥(Z,t). Because of the temporal averaging implicit in (15)), tem-
poral scales of the velocity field faster than the time scale b=! will
be averaged out from Cov(T'(k)), but slower time-dependencies will
remain and the resulting correlation network will be a temporal net-
work [HS12].

We illustrate these general results with numerical computations of cor-
relations via Egs. and for the ADE dynamics with the meandering
model flow, and construction of the associated networks. We consider the
domain z € [0,20], y € [—10, 10] with open boundary conditions and dis-
cretize it in N x N = 120 x 120 nodes, so that Az =~ 0.167. Time step
is At = 0.2. We nominally take the diffusion coefficient k = 0.02, but
the numerical diffusion [PTVF8§| introduced by the discretization is
larger, ' ~ Axz?/At = 0.139. We consider two different regimes for the
damping: b =1 and b = 0.05, corresponding to lifetimes of the perturba-
tions much shorter (b~! = 1) than the time scales of the flow (as given by
21 /w ~ 15.7), or longer (b~! = 20). For the flow all parameters are fixed
as mentioned above, except the one giving the temporal modulation of the
meander amplitude: v = 0, representing a steady flow or v = 0.7, giving a
time-dependent flow.

The network adjacency matrix A(k) is constructed from Egs. ,
and . We find that using in the sum of Eq. a number of
terms k = 314 for b = 1 and k& = 942 for b = 0.05 (which satisfy the
condition bkAt >> 1) is sufficient to pass the spin-up period in which the
initial correlations (the first term in the right-hand-side of Eq. are still
important, and to reach the asymptotic statistical regime. When v = 0
the flow is static, with streamfunction plotted in Fig. and then the
network constructed from A(k) is also static. When v # 0 the flow, and
then the correlations and the network, is periodic with period 27 /w. For
the values used for k, the times kAt correspond to exactly 4 or 12 periods
after time ¢ = 0 so that at these instants the streamfunction is also the one
plotted in Fig. To highlight the spatial structures in the network we
fix the threshold v such that the node density is 0.075 for the cases with
b = 0.05, and 0.003 for b = 1. Because of the different values we cannot
directly compare the absolute values of the network metrics computed at
different b. But we will be only interested in the spatial patterns. We have
checked that, although details of the degree and clustering distributions
vary, changing the link density in a factor of two does not alter the location
of the regions of high and low values of degree and clustering with respect
to the ones in Figs[2] and

To analyze the network structure we calculate standard network mea-
sures [DMO3,BLM™06lNew03|: node degree centrality, which is the number
of links adjacent to the node, and node clustering coefficient, which is the



fraction of triangles actually present through that node with respect to the
possible ones, given their neighbors. The degree of the nodes in the net-
work is plotted in Fig. [2] for the four combination of parameters involving
v =0,0.7 and b = 1,0.05. Fig. [3] displays the corresponding clustering
values.

In the static case (v = 0, panels A and B of Figs. [2|and [3]) the stream-
function, given in Eq. is constant in time, and plotted in Fig. As
expected from Eq. and the discussion above, regions of high degree are
not precisely associated with strong currents. Nevertheless, when damping
rate is fast (b = 1, Fig. ) the general spatial structure of the degree re-
flects the meandering shape of the flow. The similarity is stronger between
flow and clustering plots (Fig. ): patches of strong clustering follow the
meander structure, with high clustering usually associated to zones of low
degree, and viceversa.

The situation completely changes for b = 0.05 (Figures and )
Here both degree and clustering become nearly homogeneous, with only
some weak structure elongated on the horizontal x direction. The reason
is that now many terms corresponding to different times contribute to the
sum in Eq. , averaging the resulting correlations that loose spatial
structure.

If we turn on now the temporal dependence of the flow, v = 0.7, little
changes are seen. For the case b = 1 (Figures and ) this is easy
to interpret, since as discussed above only a few terms in the sum in Eq.
(15), the ones with (k — [)bAt < 1, contribute. For them the flow stays
essentially unchanged (the time scale for changes in the flow is 27/w =~
15.7 > b~! = 1). Thus the results should be nearly equivalent to the
static case. In fact only small increases in degree in the central parts and
decreases of degree at the maxima are seen in Fig. with respect to the
static case Fig. 2JA. Despite the long-time transport properties are rather
different in the static and time-dependent case (in particular Lagrangian
transport is chaotic at v = 0.7 [CLV"99]) a large damping b restricts the
correlations to be influenced only by the short term dynamics, which is
similar to the static case.

Making the decay rate slower (b = 0.05, Figs. and 3D) in this dy-
namic case for v = 0.7 has also the consequence of homogenizing the spatial
structure, in a manner similar to that of the static case. The structure is
here slightly more homogeneous than for v = 0, because of the additional
mixing associated to the chaotic dynamics.

Discussion and outlook

The results shown above close a gap in the theoretical understanding of
the relationship between networks constructed from correlation functions,
as usually done for climate networks, and the underlying dynamics of the
fluid transport.

A first observation is that, when the Pearson correlation is used to es-
tablish links between nodes, correlation networks are not sensitive to steady
sources and sinks of the transported substances. Also the normalization in
Eq. eliminates the dependence on fluctuation intensity. As a conse-
quence in geophysical contexts, one cannot look into climate networks for
information about these processes. Note that this implication is strictly
valid only for the linear ADE dynamics in Eq. and will not apply to



dynamics involving nonlinear processes (plankton dynamics, vorticity, ...).
Also, it may not hold when nonlinear measures of statistical dependence,
such as mutual information, information transfer [DBM15|DI15] or event
synchronization [MBMK11] replace the correlation function.

Another important point, evident from Eq. , is that the relationship
between the correlation network, constructed from C(k) and the underly-
ing flow transport network (characterized by Mgy or Gggs) is not direct,
since the correlation expression involves a sum over time, and each term
involves the product of two propagators, meaning that correlated nodes
are not the ones connected by the flow, but the ones affected within a time
b~! by perturbations coming from a common origin. It is straightforward
to repeat the calculations for the case in which a colored noise correlation
is used for e(k). The result is that correlated nodes are the ones affected
by perturbations coming from locations within the same correlation length
and time of the noise. In consequence, patterns of degree or of other net-
work measures are related to flow patterns in a rather indirect way, as
Figs. |2| and [3] confirm. Note that this result relies strongly on considering
the equal-time correlation. In cases in which a time-lagged correlation is
used [YGHO8,[MRMK14,ZGAH15|, the resulting network would be more
associated to fluid transport occurring between nodes during the selected
temporal lag. Also, our analysis in this paper is restricted to the ADE dy-
namics implemented by Eq. , which considers only material transport.
Our conclusions may not apply to climate networks constructed from vari-
ables involving wave propagation (Kelvin, Rossby, ...), such as sea surface
height or geopotential [AMBI14].

From the numerical results presented here it is seen that one of the
parameters having the largest impact on the network topology, in fact
more than the flow geometry or temporal variability, is the characteristic
time scale of perturbation damping (here represented by the decay rate b).
This important parameter would then have to be taken into account when
investigating the structure of climate networks constructed from observed
or analyzed data.

In summary we have elucidated, in the context of ADE dynamics,
general relationships between correlation and flow networks, overcoming
some restrictions of previous approaches, [MRMK14]. Moreover, flow net-
works are further applicable, for instance, to study changes in flow be-
havior [GYZT 16, GPEBHPM15|. All in all, the methods above can, in
principle, be applied in other contexts, in which temporal networks [HS12,
MKE13, TRM"14] are used in order to study transport process, so the
present framework can be useful to investigate different complex systems.
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Figure 1: The streamfunction for the velocity field of the mean-
dering flow. It describes a jet flowing from left to right, more intense in
the central meandering core. The streamfunction is plotted here for v = 0,
and it is the same as for any other value of v if t = 0 or a multiple of the
flow period. Other parameters are given in the text.
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Figure 2: Node degree centrality for the correlation networks
constructed for different flows and decay rates. The direction x is
horizontal and ¥ is the vertical. Panels A and B display the case of the
static flow, v = 0. C and D are for the amplitude-changing case, v = 0.7.
The network for the dynamic case is plotted at a time after ¢ = 0 multiple
of the flow period. Then, for all panels the streamfunction at the time
plotted is the one shown in Fig. Panels A and C are for the fast decay
case b = 1, and B and D are for the slow decay, b = 0.05, of the transported
substance. Other parameters as stated in the text.
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Figure 3: Node clustering coefficient for the correlation networks
constructed for different flows and decay rates. Panels are for the

same parameters as in Fig. 2]
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